Fri fragt på alle bøger slutter kl. 23.59 - køb i dag

Du er her:
Vector Fields on Manifolds af Michael Francis Atiyah

Vector Fields on Manifolds (Arbeitsgemeinschaft fur Forschung des Landes Nordrhein Westfalen)

(E-bog, PDF)

Beskrivelse: This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of exist- ence of r linear... Læs mere

This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of exist- e... Læs mere

Produktdetaljer:

Sprog:
Engelsk
ISBN-13:
9783322985033
Udgivet:
09-03-2013
Vis mere

Sæt bog på liste

  • Bogliste
kr. 749,95

kr. 489,95

Du tilmelder dig Saxo Plusmedlemskab til 69 kr. hver måned. Se hvordan du sparer tre måneders Plusmedlemskab her

Til dig, der elsker bøger

Læs mere om Plusmedlemskab
Op til 70% rabat Fri fragt
Udvidet returret Ingen binding



OBS!
E-bogen kan ikke læses på Kindle eller i iBooks. Du kan læse e-bogen på computer, tablet, smartphone og diverse e-bogslæsere. Du skal bruge et specielt læseprogram til din enhed. Læs mere om programmer, sidetal og print af e-bøger her.



Forlagets beskrivelse
This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of exist- ence of r linearly independent vector fields. For r = 1 the classical result of H. Hopf asserts that the vanishing of the Euler characteristic is the necessary and sufficient condition, and our results will give partial extens- ions of Hopf's theorem to the case r > 1. Arecent article by E. Thomas [10] gives a good survey of work in this general area. Our approach to these problems is based on the index theory of elliptic differential operators and is therefore rather different from the standard topological approach. Briefly speaking, what we do is to observe that certain invariants of a manifold (Euler characteristic, signature, etc. ) are indices of elliptic operators (see [5]) and the existence of a certain number of vector fields implies certain symmetry conditions for these operators and hence corresponding results for their indices. In this way we obtain certain necessary conditions for the existence of vector fields and, more generally , for the existence of fields of tangent planes. For example, one of our results is the following THEOREM (1. 1). Let X be a compact oriented smooth manifold 0/ dimension 4 q, and assume that X possesses a tangent fteld of oriented 2-planes (that is, an oriented 2-dimensional sub-bundle 0/ the tangent vector bundle).

Kundernes boganmeldelser af Vector Fields on Manifolds (Arbeitsgemeinschaft fur Forschung des Landes Nordrhein Westfalen)


Der er ingen anmeldelser af Vector Fields on Manifolds (Arbeitsgemeinschaft fur Forschung des Landes Nordrhein Westfalen)

for at skrive en anmeldelse.

Se andre bøger, der handler om:

Se også: