This paper is a contribution to the topological study of vector fields on manifolds. In particular we shall be concerned with the problems of exist- ence of r linearly independent vector fields. For r = 1 the classical result of H. Hopf asserts that the vanishing of the Euler characte... Læs mereristic is the necessary and sufficient condition, and our results will give partial extens- ions of Hopf's theorem to the case r > 1. Arecent article by E. Thomas [10] gives a good survey of work in this general area. Our approach to these problems is based on the index theory of elliptic differential operators and is therefore rather different from the standard topological approach. Briefly speaking, what we do is to observe that certain invariants of a manifold (Euler characteristic, signature, etc. ) are indices of elliptic operators (see [5]) and the existence of a certain number of vector fields implies certain symmetry conditions for these operators and hence corresponding results for their indices. In this way we obtain certain necessary conditions for the existence of vector fields and, more generally , for the existence of fields of tangent planes. For example, one of our results is the following THEOREM (1. 1). Let X be a compact oriented smooth manifold 0/ dimension 4 q, and assume that X possesses a tangent fteld of oriented 2-planes (that is, an oriented 2-dimensional sub-bundle 0/ the tangent vector bundle). Læs mindre
OBS! E-bogen kan ikke læses på Kindle eller i iBooks. Du kan læse e-bogen på computer, tablet, smartphone og diverse e-bogslæsere. Du skal bruge et specielt læseprogram til din enhed. Læs mere om programmer, sidetal og print af e-bøger Læs mere om Saxo Premium her..
Hvis denne bog ikke er noget for dig, kan du benytte kategorierne nedenfor til at finde andre titler. Klik på en kategori for at se lignende bøger.