Understanding Computational Bayesian Statistics

af

indgår i serie Wiley Series in Computational Statistics


Understanding Computational Bayesian Statistics
Du sparer Spar kr. 60,00 med Saxo Premium
  • Leveringstid 5-9 hverdage
  • Forventet levering 12-03-2021
Hvis du køber til medlemspris, bliver du automatisk medlem af Saxo Premium. De første 30 dage er gratis, derefter koster det 99,-/md. Medlemskabet fornyes automatisk og kan altid opsiges. Læs mere om alle fordelene her.
Format:
Bog, hardback
Udgivelsesdato:
01-11-2009
Sprog:
Engelsk
  • Beskrivelse
  • Yderligere info
  • Anmeldelser

A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples.Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels.It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.

Vis mereVis mindre

Udgivelsesdato:
01-11-2009
ISBN13:
9780470046098
Vægt:
632 g
Dybde:
24 mm
Bredde:
166 mm
Højde:
242 mm
Format:
Hardback
Forfattere

Vis mereVis mindre

Vis mereVis mindre

Fandt du ikke hvad du søgte?

Hvis denne bog ikke er noget for dig, kan du benytte kategorierne nedenfor til at finde andre titler. Klik på en kategori for at se lignende bøger.

Velkommen til Saxo - din danske boghandel!

Hos os kan du handle som Gæst, Saxo-bruger eller Saxo Premium-medlem. Du bestemmer selv, og vores kundeservice sidder altid klar med hjælp.

Om medlemspriser hos Saxo

Hvis du køber til medlemspris, bliver du automatisk medlem og får del i de mange fede fordele. De første 30 dage er gratis for nye brugere, og derefter koster det kun 99,-/md. Medlemskabet fornyes automatisk, og du kan altid opsige det. Læs mere om fordelene ved Saxo Premium her.

Machine Name: SAXO082