Du er her:
Bog, paperback Sobolev Gradients and Differential Equations af John W. Neuberger

Sobolev Gradients and Differential Equations (Lecture Notes in Mathematics, nr. 1670)

(Bog, paperback)

A Soblev gradient of a real-valued functional is one taken relative to the underlying Sobolev norm. This text looks at methods using such gradients which are shown to allow a unified treatment of a wide variety of problems in differential equations. 8 figures

A Soblev gradient of a real-valued functional is one taken relative to the underlying Sobolev norm. This text looks at methods using such gradients wh... Læs mere

Produktdetaljer:

Sprog:
Engelsk
ISBN-13:
9783540635376
Sideantal:
158
Udgivet:
10-10-1997
Nr. i serien:
v. 1670
Vis mere

Sæt bog på liste

  • Bogliste

Leveringstid
Kan desværre ikke skaffes

Du tilmelder dig Saxo Plusmedlemskab til 69 kr. hver måned. Se hvordan du sparer tre måneders Plusmedlemskab her

Til dig, der elsker bøger

Læs mere om Plusmedlemskab
Op til 70% rabat Fri fragt
Udvidet returret Ingen binding


Forlagets beskrivelse
A Soblev gradient of a real-valued functional is one taken relative to the underlying Sobolev norm. This text looks at methods using such gradients which are shown to allow a unified treatment of a wide variety of problems in differential equations. 8 figures
Bibliotekernes beskrivelse
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

Kundernes boganmeldelser af Sobolev Gradients and Differential Equations (Lecture Notes in Mathematics, nr. 1670)

Anmeld bogen og vær med i konkurrencen om gavekort – læs mere her.

Der er ingen anmeldelser af Sobolev Gradients and Differential Equations (Lecture Notes in Mathematics, nr. 1670)

for at skrive en anmeldelse.

Bogens kategori: