Image Segmentation and Compression Using Hidden Markov Models

af

indgår i serie Springer International Series in Engineering and Computer Science


Image Segmentation and Compression Using Hidden Markov Models
  • Leveringstid 4-6 hverdage
  • Forventet levering 27-12-2019
  • Kan ikke leveres før jul
Format:
Bog, hardback
Udgivelsesdato:
01-08-2000
Sprog:
Engelsk
  • Beskrivelse
  • Yderligere info
  • Anmeldelser

In the current age of information technology, the issues of distributing and utilizing images efficiently and effectively are of substantial concern. Solutions to many of the problems arising from these issues are provided by techniques of image processing, among which segmentation and compression are topics of this book.

Image segmentation is a process for dividing an image into its constituent parts. For block-based segmentation using statistical classification, an image is divided into blocks and a feature vector is formed for each block by grouping statistics of its pixel intensities. Conventional block-based segmentation algorithms classify each block separately, assuming independence of feature vectors.

Image Segmentation and Compression Using Hidden Markov Models presents a new algorithm that models the statistical dependence among image blocks by two dimensional hidden Markov models (HMMs). Formulas for estimating the model according to the maximum likelihood criterion are derived from the EM algorithm. To segment an image, optimal classes are searched jointly for all the blocks by the maximum a posteriori (MAP) rule. The 2-D HMM is extended to multiresolution so that more context information is exploited in classification and fast progressive segmentation schemes can be formed naturally.

The second issue addressed in the book is the design of joint compression and classification systems using the 2-D HMM and vector quantization. A classifier designed with the side goal of good compression often outperforms one aimed solely at classification because overfitting to training data is suppressed by vector quantization.

Image Segmentation and Compression Using Hidden Markov Models is an essential reference source for researchers and engineers working in statistical signal processing or image processing, especially those who are interested in hidden Markov models. It is also of value to those working on statistical modeling.

Andre udgaver:

Bog, hæftet
E-bog, PDF

Vis mereVis mindre

Udgivelsesdato:
01-08-2000
ISBN13:
9780792378990
Vægt:
404 g
Dybde:
11 mm
Bredde:
156 mm
Højde:
234 mm
Forlag:
Springer
Format:
Hardback

Vis mereVis mindre

Vis mereVis mindre

Fandt du ikke hvad du søgte?

Hvis denne bog ikke er noget for dig, kan du benytte kategorierne nedenfor til at finde andre titler. Klik på en kategori for at se lignende bøger.

Velkommen til Saxo - din danske boghandel!

Hos os kan du handle som Gæst, Saxo-bruger eller Saxo Premium-medlem. Du bestemmer selv, og vores kundeservice sidder altid klar med hjælp.

Om medlemspriser hos Saxo

Hvis du køber til medlemspris, bliver du automatisk medlem og får del i de mange fede fordele. De første 30 dage er gratis for nye brugere, og derefter koster det kun 99,-/md. Medlemskabet fornyes automatisk, og du kan altid opsige det. Læs mere om fordelene ved Saxo Premium her.

Machine Name: SAXO131