Differential Geometry

- Connections, Curvature, and Characteristic Classes



Differential Geometry
Du sparer Spar kr. 5,00 med Shopping-fordele
  • Leveringstid 4-5 hverdage
  • Forventet levering 20-05-2021
For at købe bogen til fordelspris skal du have et medlemskab med Shopping-fordele. Du kan prøve medlemskabet gratis de første 30 dage. Medlemskabet fornyes automatisk og kan altid opsiges. Læs mere om medlemskaber og Shopping-fordele her.
Bog, hardback
  • Beskrivelse
  • Yderligere info
  • Anmeldelser

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern-Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss-Bonnet theorem. Exercises throughout the book test the reader's understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text.Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included.

Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Vis mereVis mindre

747 g
25 mm
179 mm
241 mm
Nummer i serien:

Vis mereVis mindre

Vis mereVis mindre

Fandt du ikke hvad du søgte?

Hvis denne bog ikke er noget for dig, kan du benytte kategorierne nedenfor til at finde andre titler. Klik på en kategori for at se lignende bøger.

Velkommen til Saxo – din danske boghandel!

Hos os kan du handle som gæst, Saxo-bruger eller Premium-medlem – du bestemmer helt selv. Skulle du få brug for hjælp, sidder vores kundeservice-team klar ved både telefonerne og tasterne.

Om fordelspriser hos Saxo

For at købe bøger til fordelspris, skal du være medlem af Premium, Premium Shopping eller Premium Studie. De første 30 dage er gratis for nye medlemmer. Medlemskabet fornyes automatisk og kan altid opsiges. Læs mere om fordelene ved vores forskellige medlemskaber her.

Machine Name: SAXO080