Deep Generative Modeling

af

Studiebog
Deep Generative Modeling
Du sparer Spar kr. 30,00 med Shopping-fordele
  • Leveringstid 6-8 hverdage (Sendes fra fjernlager)
  • Forventet levering 05-04-2023
For at købe bogen til medlemspris skal du have et medlemskab med Shopping-fordele.
Du kan prøve medlemskabet gratis i 30 dage. Medlemskabet fornyes automatisk og kan altid opsiges.
Format:
Bog, hardback
Udgivelsesdato:
01-02-2022
Sprog:
Engelsk
Udgave:
1st ed. 2022.

Send som gave

Skal vi pakke ind og sende som gave til en, du holder af? Vælg gaveindpakning i kurven. Læs mere
  • Beskrivelse
  • Yderligere info
  • Anmeldelser

This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Andre udgaver:

Bog, paperback
E-bog, ePub

Vis mereVis mindre

Udgivelsesdato:
01-02-2022
ISBN13:
9783030931575
Vægt:
494 g
Dybde:
17 mm
Bredde:
155 mm
Højde:
235 mm
Format:
Hardback

Vis mereVis mindre

Vis mereVis mindre

Fandt du ikke hvad du søgte?

Hvis denne bog ikke er noget for dig, kan du benytte kategorierne nedenfor til at finde andre titler. Klik på en kategori for at se lignende bøger.

Velkommen til Saxo – din danske boghandel

Hos os kan du handle som gæst, Saxo-bruger eller Saxo-medlem – du bestemmer selv. Skulle du få brug for hjælp, sidder vores kundeservice-team klar ved både telefonerne og tasterne.

Om medlemspriser hos Saxo

For at købe bøger til medlemspris skal du være medlem af Saxo Premium, Saxo Shopping eller Saxo Studie. De første 30 dage er gratis for nye medlemmer. Medlemskabet fornyes automatisk og kan altid opsiges. Læs mere om fordelene ved vores forskellige medlemskaber her.

Machine Name: SAXO080