Du sparer 26% fra forlagets pris Du sparer 26% fra forlagets pris
Clustering

Clustering

af

  • Forlagets pris kr. 1.069,95
  • Leveringstid Mangler hos leverandør
Bog, hardback (kr. 789,95)
  1. Beskrivelse

    Earlier ed. published under title: Clustering for data mining. 173 equations; 122 Tables, black and white; 47 Illustrations, black and white

    Udgivelsesdato:
    15-11-2012
    Leveringstid:
    Mangler hos leverandør
    Rating:
    (0)
  2. Yderligere info
    Udgivelsesdato:
    15-11-2012
    Sprog:
    Engelsk
    ISBN13:
    9781439838419
    Sidetal:
    374
    Vægt:
    664
    Højde:
    25
    Bredde:
    156
    Længde:
    235
    Nummer i serien:
    19
    Mærkat:
    Bog, hardback
    Format:
    Hardback
    Udgave:
    2nd New edition
    • Bibliotekernes beskrivelse

      Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods-K-Means for partitioning and Ward's method for hierarchical clustering-have lacked the theoretical underpinning required to establish a firm relationship between the two methods and relevant interpretation aids. Other approaches, such as spectral clustering or consensus clustering, are considered absolutely unrelated to each other or to the two above mentioned methods. Clustering: A Data Recovery Approach, Second Edition presents a unified modeling approach for the most popular clustering methods: the K-Means and hierarchical techniques, especially for divisive clustering. It significantly expands coverage of the mathematics of data recovery, and includes a new chapter covering more recent popular network clustering approaches-spectral, modularity and uniform, additive, and consensus-treated within the same data recovery approach. Another added chapter covers cluster validation and interpretation, including recent developments for ontology-driven interpretation of clusters. Altogether, the insertions added a hundred pages to the book, even in spite of the fact that fragments unrelated to the main topics were removed. Illustrated using a set of small real-world datasets and more than a hundred examples, the book is oriented towards students, practitioners, and theoreticians of cluster analysis. Covering topics that are beyond the scope of most texts, the author's explanations of data recovery methods, theory-based advice, pre- and post-processing issues and his clear, practical instructions for real-world data mining make this book ideally suited for teaching, self-study, and professional reference.

  3. Anmeldelser
    Log ind for at skrive en anmeldelse.

Andre bøger af

Core Concepts in Data Analysis: Summarization, Correlation and Visualization
Mathematical Classification and Clustering
Knowledge Science
Core Concepts in Data Analysis: Summarization, Correlation and Visualization
Mathematical Classification and Clustering