Fri fragt på alle bøger slutter kl. 23.59 - køb i dag

Du er her:
Arithmetical Investigations af Shai M. J. Haran

Arithmetical Investigations (Lecture Notes in Mathematics)

- Representation Theory, Orthogonal Polynomials, and Quantum Interpolations

(E-bog, PDF)

Beskrivelse: In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-... Læs mere

In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers... Læs mere

Produktdetaljer:

Sprog:
Engelsk
ISBN-13:
9783540783794
Udgivet:
25-04-2008
Vis mere

Sæt bog på liste

  • Bogliste
kr. 339,95

kr. 219,95

Du tilmelder dig Saxo Plusmedlemskab til 69 kr. hver måned. Se hvordan du sparer tre måneders Plusmedlemskab her

Til dig, der elsker bøger

Læs mere om Plusmedlemskab
Op til 70% rabat Fri fragt
Udvidet returret Ingen binding



OBS!
E-bogen kan ikke læses på Kindle eller i iBooks. Du kan læse e-bogen på computer, tablet, smartphone og diverse e-bogslæsere. Du skal bruge et specielt læseprogram til din enhed. Læs mere om programmer, sidetal og print af e-bøger her.



Forlagets beskrivelse
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp,w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1],w) - the orthogonal polynomials, and to a Markov chain on 'finite approximations' of [-1,1]. For special (gamma and beta) measures there is a 'quantum' or 'q-analogue' Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.

Kundernes boganmeldelser af Arithmetical Investigations (Lecture Notes in Mathematics)


Der er ingen anmeldelser af Arithmetical Investigations (Lecture Notes in Mathematics)

for at skrive en anmeldelse.

Se andre bøger, der handler om:

Se også: