Analog IC Placement Generation via Neural Networks from Unlabeled Data

af

indgår i serie Springerbriefs in Applied Sciences and Technology


Analog IC Placement Generation via Neural Networks from Unlabeled Data
Du sparer Spar kr. 40,00 med Saxo Premium
  • Leveringstid 5-9 hverdage
  • Forventet levering 11-03-2021
Hvis du køber til medlemspris, bliver du automatisk medlem af Saxo Premium. De første 30 dage er gratis, derefter koster det 99,-/md. Medlemskabet fornyes automatisk og kan altid opsiges. Læs mere om alle fordelene her.
Format:
Bog, paperback
Udgivelsesdato:
01-07-2020
Sprog:
Engelsk
Udgave:
1st ed. 2020.
  • Beskrivelse
  • Yderligere info
  • Anmeldelser

In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs' generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system's characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of these descriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies. In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model's effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem's context (high label production cost), resulting in an efficient, inexpensive and fast model.

Andre udgaver:

E-bog, ePub

Vis mereVis mindre

Udgivelsesdato:
01-07-2020
ISBN13:
9783030500603
Vægt:
174 g
Dybde:
5 mm
Bredde:
155 mm
Højde:
235 mm
Format:
Paperback

Vis mereVis mindre

Vis mereVis mindre

Fandt du ikke hvad du søgte?

Hvis denne bog ikke er noget for dig, kan du benytte kategorierne nedenfor til at finde andre titler. Klik på en kategori for at se lignende bøger.

Velkommen til Saxo - din danske boghandel!

Hos os kan du handle som Gæst, Saxo-bruger eller Saxo Premium-medlem. Du bestemmer selv, og vores kundeservice sidder altid klar med hjælp.

Om medlemspriser hos Saxo

Hvis du køber til medlemspris, bliver du automatisk medlem og får del i de mange fede fordele. De første 30 dage er gratis for nye brugere, og derefter koster det kun 99,-/md. Medlemskabet fornyes automatisk, og du kan altid opsige det. Læs mere om fordelene ved Saxo Premium her.

Machine Name: SAXO081